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Lecture 5 Main Points Once Again

* Bayesian network (G, P)
- Directed acyclic graph (DAG): G, comprised of nodes V and edges E
- Joint distribution P over V| random variables

- P is Markov to G if variables in P satisfy X4 1 Xp | X¢ whenever C d-
separates A and B as read off from G

* Markov network (H,P)
- Undirected graph (UG): H, comprised of nodes V and edges E
- Joint distribution P over V| random variables

- P is Global Markov to H if variables in P satisfy X4 1 Xp | X¢c whenever
C separates A and B as read off from the graph

' Roughly, given Markov properties, graph G, or H is a valid guide to
understand the variable relationships in distribution P
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Lecture 5 Main Points Once Again (continued)

* Question: Given a distribution P that is Markov to a DAG G, can we find an UG

H with the same set of nodes so that P is also Markov to it? (Yes, by
moralization—"marrying the parents". But UG could lose some d-separations,
e.g., v-structure; won't lose any if ¢ is already moralized.)

- (Question above, but with DAG and UG reversed) (Yes, by constructing directed
edges following certain node ordering. But DAG could lose some separations,
e.g., four-node loop)

- Are there distributions representable by both DAG and UG, but without loss of
(d-)separations? (Yes.) If so, under what conditions? (Those distributions either
are Markov to a chordal Markov network, or to a DAG without immoralities.)

* Definition (chordal Markov network): every one of its loops of length > 4
possesses a chord, where a chord in the loop is an edge (from the original
graph) connecting X; and X; for two nonconsecutive nodes (with respect to
the loop).
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Markov Network Example: Ising Model

- A mathematical model of ferromagnetism in statistical mechanics; Named
after physicist Ernst Ising;

-+ The model consists of discrete variables that represent magnetic dipole
moments of atomic spins that can be in one of two states (+1 or —1).

-+ The spins are arranged in a graph, usually a lattice, allowing each spin to
interact with its neighbors.
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Markov Network Example: Ising Model

* Formulation: Let H = (V, E) be an undirected graph, e.g., (lattice or non-

lattice). Let the binary random variables X; € {—1,+1}. The Ising model takes
the form

P(x; 0) «x exp(Z 0, x; + Z gijxixj>

=A% (iy)eE

* From the model form, Ising model is positive and Markov to H. Using the local
Markov property, and code the —1 into O, the conditional distribution for a
node X; given all its neighbors is given by a logisitic regression:

PriXi = 1| X;,j#;0) = Pr(Xi =1 X,(i,)) € E; 0)

= sigmoid(0; + Z 0;ix;)

J:()EE
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Markov Network Example: Special case of Ising
Model

* No external field: 8, =0,X; € V
’ elj=ﬂ],Vi,j.
- We have

P(x; 0) exp(ﬂ -J - Z Xixj>

(ij)€eE

* p.inverse temperature; large g, lower temperature (colder)

* J > 0: neighboring nodes tend to align, so-called ferromagnetic model; J < 0:
anti-ferromagnetic.
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Square-Lattice Ising Model under Different

Temperatures

© P(X;0) exp(ﬂ - J - Z(iJ)EE .Xi.x]'>
- SetJ =2, ferromagnetic

- (Run Lectureb6 .Rmd in RStudio)
- Vary inverse temperature:

- Try different graph size: n*

n: grid points beta: inverse-temperature
32 300 0.1 0.5

- | G

20 140 260 0 0.2 0.4
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Bayesian Network Example: Naive Bayes for
SPAM classification

Meet Explode
Clearance singles your
g business

- Features (words) assumed independent given SPAM or HAM status, hence
"naive”

- Infer the SPAM status given observed evidence from the email

- Very fast, low storage requirements, robust to irrelevant features, good for
benchmarking

8/14



Bayesian Network Example: Beta-Binomial Model

Beta
parameters

Penalty sho
score :’ate 91

player

Dempsey Neymar Messi Benzema

- 30 soccer players' penalty shot score rates and the actual number of shots
- What's the best estimate of a player's scoring rate? (empirical Bayes estimate)

Information from other players could contribute to a given player's score rate
estimate. Use moralized graph to explain.
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Inference for Bayesian Network: Moralization

- Question: given observed evidence, what's the updated probability
distribution for those unobserved variables? Or more specifically, which
conditional independencies still hold, which don't?

* Proposition 4.7 Let G be a Bayesian Network over Vand Z =z an
observation. Let W =V —Z . Then Pc(W | Z = z) is a Gibbs distribution
defined by factors ® = {¢x; }x.ev, where ¢x, = Pg(X; | Pax;)[Z = z]. The
partition function for this Gibbs distribution is P¢(Z = z), the marginal
probability.

- Use the moralized graph to identify conditional independencies given
observed data.

- Because the Gibbs distribution above factorizes according to a moralized
graph M(G) which creates cliques for a family (parents and a child).

* And P factorizing with respect to M(G) amounts to P satisfying the Markov

property. This means you can use the moralized graph as a "map", albeit it
could miss some original conditional independence information.
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Moralized Graph

- Naturally, if a Bayesian network is already moral (parents are connected by
directed edges), then moralization will not add extra edges and conditional

independencies will not be lost.

* S0 in this case separations in UG M(G) correspond one-to-one for d-
separations in the original DAG G.
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Chordal Graph

f H is an UG, and let G be any DAG that is minimal I-map for H, then G must
nave no immoralities. [Proof]

Nonchordal DAGs must have immoralities

* G then must be chordal

- The conditional independencies encoded by an undirected chordal graph can
be perfectly encoded by a directed graph. (Use clique tree proof)

* If H is nonchordal, no DAG can encode perfectly the same set of conditional
independencies as in H. (Use the third bullet point.)
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The connections among graphs and distributions
(note from Lafferty, Liu and Wasserman)

DAG:s without
unshielded
N, colliders

DAGs

/ Distribution

o /
Mark random fields

Decomposable models

- The intersection of Bayesian networks and Markov networks (or random
fields) are those distributions Markov to a chordal Markov network or to a
DAG without immoralities.

* Chordal graph & decomposable graph
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Comment

- Next Lecture: Overview of Module 2 that discusses inference: more
algorithmic-flavored and exciting ideas. Begin exact inference.

+ No required reading.

- Homework 1 due 11:59PM, October 3rd, 2016 to Instructor's email.
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