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Inference Techniques

• Central task of applying probabilistic models:
• Evaluate the posterior: 𝑝(𝑍 ∣ 𝑋&'()

• Exact Inference Algorithms
• Variable elimination
• Message-passing (sum-product, max-product)
• Junction-Tree algorithms

• Approximate Inference
• To overcome the exponential (of graph treewidth)
computational/space complexity for exact inference
algorithms
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Approximate Inference Techniques

• Stochastic approximation
• Given infinite computational resources, they can generate exact results; the approximation

arises from the use of a finite amount of processor time
• Monte Carlo
• Buffon’s needle;
• Direct sampling (Box-Muller for bivariate Gaussian; Inverse Transformation)
• Popular ones: Rejection sampling; Slice sampling; Likelihood weighting
• Markov Chain Monte Carlo:

• Metroplis-Hastings sampling (Metropolis N, Rosenbluth AW, Rosenbluth, Teller AH, Teller E (1953),
Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics);
Extended by Hastings WK (1970) Biometrika.

• Gibbs sampling (Geman and Geman, 1984), etc.
• Hamiltonian Monte Carlo
• Scalable Bayesian algorithms: Parallel and distributed MCMC (research frontier; e.g., Scott

SL et al. 2013, consensus Monte Carlo)
• Need to address:

• How to draw samples?
• How to make efficient use of the obtained samples?
• When to stop?
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Approximate Inference Techniques

• Deterministic approximation (later lectures)
• Scale well to large applications, natural language
processing (Blei et al. (2003) JMLR, latent Dirichlet
allocation); image processing
• Based on analytic approximations to the posterior
distribution, for example, assume specific factorization,
or parametric form such as Gaussian (work with a
smaller class of distributions that are close to the target)
• Loopy belief propagation
• Mean field approximation
• Expectation propagation
• …
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Monte	Carlo

1.	Get	expectation	that	is	difficult	to	calculate
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Markov	chain	Monte	Carlo
2.	Construct	correlated	samples	that	explore	target	distribution.
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Example:	Bivariate	Gaussian
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Bivariate	Gaussian

10/20/16 7



Gibbs	Sampler
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Simple	Gibbs	Sampler
First	50	Samples;	Rho=0.995
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Slice	Sampler
First	50	samples;	Rho=0.995
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Gibbs	Sampler	on	Rotated	Coordinate
Rho=0.995
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Lessons	Learned

• Re-parametrize	the	model	or	de-correlate	posterior	
shape	when	possible
• The	covariance	structure	of	the	posterior	density	
guides	improvement	of	MCMC	algorithm
• In	WinBUGS,	first	5,000	samples	should	not	be	
used	for	inference:	they	are	used	to	explore	
posterior	shape	and	to	tune	proposal	parameters
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Hamiltonian	Monte	Carlo	(HMC)
First	50	samples;	Rho=0.995
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Hamiltonian	Monte	Carlo	(HMC)

• Computing	core	of	Stan	http://mc-stan.org/
• Advantage
• Super	fast
• Cross-platform
• Has	algorithms	to	determine	the	number	of	leapfrog	
steps	(No-U-Turn	sampler)

• Limitation
• Does	not	support	sampling	discrete	parameters	(no	
associated	gradient	required	for	sampling	algorithm)
• Can	trick	Stan	to	do	the	job	in	some	parametric	models
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Comments

• A	good	posterior sampling algorithm	is	the	one	that	
• Use maximal information from the	posterior	terrain
• Bold but	wise	explorations

• Play with the code:
https://github.com/zhenkewu/demo_code

• Chapter 11, Bishop CM (2007) Pattern Recognition
and Machine Learning.
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