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Appendix S1. Mean and Covariance Structure

In this section, we present and discuss formulas for the model-based marginal observation rates

and pairwise log odds ratios among cases and controls. They can be readily modified to accom-

modate “other” causes as discussed in Section 2.3 of the Main Manuscript.

Appendix S1.1 Marginal Observation Rate

The marginal observation rates are given by

P(Mi′j = 1 | Yi′ = 1) = πj

K∑
k=1

θ
(j)
k ηk + (1− πj)

{
K∑
k=1

ψ
(j)
k ηk

}
, (A1)

P(Mij = 1 | Yi = 0) =

K∑
k=1

ψ
(j)
k νk. (A2)

In the context of childhood pneumonia problem, Equation (A1) indicates that the observed

rate of pathogen j among cases comprises of two parts: cases whose disease is caused by pathogen
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j for which the observation is a true positive event, and those whose disease is caused by another

pathogen for which the observation is a false positive.

The case and control mean observation rates for pathogen j are equal when either of Condition

(I) or (II) below holds.

(I) ψ
(j)
1 = · · · = ψ

(j)
K = ψ(j) and

K∑
k=1

θ
(j)
k ηk = ψ(j);

(II) η = ν, and

K∑
k=1

[
θ
(j)
k ηk − ψ(j)

k νk

]
= 0.

The first part of Condition (I) says that the binary response on dimension j is constant across

subclasses among controls, which implies independence of j-th dimension’s measurement to other

dimensions. The second part says, within the jth disease class, the marginal observation rate of

dimension j equals the control rate.

Condition (II) means the case and control subclass weights are equal and the observation

rates are also equal for the jth case class and controls. The multivariate binary distributions

satisfying this condition are special cases of the non-interference submodels (Section 2.3 of the

Main Manuscript).

Appendix S1.2 Marginal Pairwise Log Odds Ratios

The marginal pairwise log odds ratio ωj` for pathogen pair (j, `) among cases is given by:

ωj` = log

{
P(Mij = 1,Mi` = 1)P(Mij = 0,Mi` = 0)

P(Mij = 1,Mi` = 0)P(Mij = 0,Mi` = 1)

}
= log

(
J∑
c=1

πc

[
K∑
k=1

{
θ
(j)
k

}1{c=j} {
ψ
(j)
k

}1{c 6=j} {
θ
(`)
k

}1{c=`} {
ψ
(`)
k

}1{c 6=`}
ηk

])

− log

(
J∑
c=1

πc

[
K∑
k=1

{
1− θ(j)k

}1{c=j} {
1− ψ(j)

k

}1{c6=j} {
θ
(`)
k

}1{c=`} {
ψ
(`)
k

}1{c6=`}
ηk

])

+ log

(
J∑
c=1

πc

[
K∑
k=1

{
1− θ(j)k

}1{c=j} {
1− ψ(j)

k

}1{c6=j} {
1− θ(`)k

}1{c=`} {
1− ψ(`)

k

}1{c6=`}
ηk

])
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− log

(
J∑
c=1

πc

[
K∑
k=1

{
θ
(j)
k

}1{c=j} {
ψ
(j)
k

}1{c6=j} {
1− θ(`)k

}1{c=`} {
1− ψ(`)

k

}1{c6=`}
ηk

])
. (A3)

Setting K = 1 in the formula gives log odds ratios for a locally independent model (Wu and

others, 2016). When K > 1, suppose nearly all of pneumonia is caused by pathogen j: πj ≈ 1,

we calculate ωj` under two scenarios:

a) If the true positive rates for pathogen j across subclasses, i.e. θ
(j)
k , k = 1, ...,K, are equal,

then ωj` ≈ 0, that is, we have approximate marginal independence between measurements

on the jth pathogen and the rest among the cases;

b) If the number of subclasses K = 2 and true positive rates θ
(j)
k , k = 1, 2 are very different,

say, 1 versus 0 as an extreme example, we can show that ωj` = logit(ψ
(`)
1 )−logit(ψ(`)

2 ), which

means the pairwise log odds ratio between pathogen j and ` among cases is determined by

the variation of control subclass FPRs for the `th pathogen.

Appendix S2. Priors

Appendix S2.1 Prior Specifications

For the npLCM, we specify the prior distributions on unknown parameters as follows:

π ∼ Dirichlet(a1, . . . , aL), (A4)

ψ
(j)
k ∼ Beta(b1kj , b2kj), j = 1, ..., J ; k = 1, ...,∞, (A5)

θ
(j)
k ∼ Beta(c1kj , c2kj), j = 1, ..., J ; k = 1, ...,∞, (A6)

Zi | Yi = 1 ∼
∞∑
k=1

Uk
∏
s<k

[1− Us] δk, Uk ∼ Beta(1, α1), i = 1, ..., n1, (A7)

Zi | Yi = 0 ∼
∞∑
k=1

Vk
∏
s<k

[1− Vs]δk, Vk ∼ Beta(1, α0), i = n1 + 1, ..., n1 + n0, (A8)

α0, α1 ∼ Gamma(0.25, 0.25), (A9)
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where δk is a point mass on k, and prior independence is also assumed among these parameters.

As discussed in more detail by Wu and others (2016, p.7), the npLCM likelihood similarly has

the TPRs Θ that are not fully identified by the model likelihood and hence is partially identified

(Jones and others, 2010). Therefore, we choose (c1kj , c2kj),∀k, j, so that the 2.5% and 97.5%

quantiles of the Beta distribution with parameters (c1kj , c2kj) match the prior minimum and

maximum TPR values elicited from pneumonia experts (Section 5 in the Main Manuscript).

Otherwise, we use the default value of 1s for the Beta hyperparameters. Hyperparameters for the

etiology prior, (a1, ..., aJ)′, are usually 1s to denote equal and flat prior weights for each pathogen

if expert prior knowledge is unavailable.

Because our goal is to estimate the etiology fractions, π, after marginalizing over subclass

indicators (Zi), the parameters for the dependence structure within each disease class are nuisance

parameters. Therefore, rather than fixing K, we let K be a random positive integer and perform

model averaging using a prior that encourages small values of K to incorporate its uncertainty into

the inference about π in a parsimonious way. This prevents model overfitting in finite samples

when the observed contingency table for the multivariate binary PERCH measurements has

mostly empty cells. In (A7) and (A8), we have actually specified stick-breaking priors for both η ={
Uk
∏
s<k [1− Us]

}
k=1,2,... and ν =

{
Vk
∏
s<k[1− Vs]

}
k=1,2,... that on average place decreasing

weights on the kth subclass as k increases (Sethuraman, 1994).

Appendix S2.2 Stick-Breaking Prior

This section briefly discusses the stick-breaking priors used in the Bayesian inference for the

nested partially-latent class models. A stick-breaking mixture model in theory has countably

infinite number of subclasses. However, because the νk and ηk decrease exponentially quickly in

k, a priori, we expect that only a small number of subclasses will be used to model the data.

The expected number of subclasses from a stick-breaking prior is logarithmic in the number of
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observations (Hjort and others, 2010). This is different than a finite mixture model, which uses

a fixed number of clusters to model the data. In the stick-breaking mixture model, the actual

number of clusters used to model data is not fixed, and can be automatically inferred from data

using the usual Bayesian posterior inference framework (Neal, 2000).

Equations (A7)-(A9) place exchangeable prior weight on the subclasses. Following Ishwaran

and James (2002), in our computations, we truncate the infinite sum to the first K∗ terms with

K∗ sufficiently large to balance computing speed and approximating performance of the model.

In our simulations and data application K∗ = 10 is usually deemed adequate. Most subclass

measurement profiles are not assigned with meaningful weights either in the simulations or in data

application, so that a small number of effective subclasses are usually sufficient for approximation.

Also, by placing hyperpriors on stick-breaking parameters α0 and α1 as in Equation (A9), we

can let the data inform us about the desired sparsity level for approximating the probability

contingency tables for the control and each disease class. A small value of the estimate α̂0 (α̂1)

suggests that only a small number of subclasses are necessary for the controls (cases). We have

chosen hyperparameters in the Gamma hyperpriors for α1 and α1 to be (0.25, 0.25) which gives

good parameter estimation performance in simulations.

Appendix S3. Gibbs Sampling Algorithm

For posterior computation involving stick-breaking priors, without truncation on the number of

stick segments, Walker (2007) and Papaspiliopoulos and Roberts (2008) proposed the slice sam-

pler and retrospective MCMC, respectively. In the following, we develop a simple and efficient

blocked Gibbs sampler relying on truncation approximation to the stick-breaking prior distribu-

tion (e.g., Ishwaran and James, 2001; Gelfand and Kottas, 2002). We also include in the sampling

algorithms two sets of auxiliary variables, the partially-latent individual class indicator (Ii) the

nested subclass indicator (Zi).
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All model estimations are performed by the R package “baker” (https://github.com/zhenkewu/baker)

that interfaces with freely available software JAGS 3.4.0 (http://mcmc-jags.sourceforge.net/).

Convergence was monitored via MCMC chain histories, auto-correlations, kernel density plots,

and Brooks-Gelman-Rubin statistics (Brooks and Gelman, 1998). The statistical results below

are based on 10, 000 iterations of burn-in followed by 50, 000 production samples from each of

three parallel chains. Samples from every 50 iterations are retained for inference.

In the following are the MCMC sampling steps, assuming the truncation level is K∗ = K:

1. Update the class indicator Ii′ for cases i′ = 1, ..., n1, from a categorical distribution with

probabilities

P(Ii′ = j | · · · ) = p
(j)
i′ ∝ [Mi′ | Zi′ ,Θ,Ψ, Ii′ = j][Zi′ | η, Ii′ = j][Ii′ = j | π]

∝
{
θ
(j)
Zi′

}Mi′j {
1− θ(j)Zi′

}1−Mi′j ∏
l 6=j

{
ψ
(l)
Zi′

}Mi′l {
1− ψ(l)

Zi′

}1−Mi′l
· ηZi′ · πj ,

for j = 1, ..., J .

2. Update subclass indicators Zi′ for case i′ = 1, ..., n1, from a categorical distribution with

probabilities

P(Zi′ = k | · · · ) = qi′k ∝ [Mi′ | Zi′ , Ii′ ,Θ,Ψ][Zi′ | Ii′ ,η]

∝ ηk ·
{
θ
(Ii′ )
k

}Mi′I
i′
{

1− θ(Ii′ )k

}1−Mi′I
i′
∏
l 6=Ii′

{
ψ
(l)
k

}Mi′l {
1− ψ(l)

k

}1−Mi′l
.

Update subclass indicators Zi for control i = n1 + 1, ..., n1 + n0, from a categorical distri-

bution with probabilities

P(Zi = k | · · · ) = qik ∝ [Mi | Zi = k,Ψ][Zi = k | ν]

∝ νk ·
J∏
j=1

{
ψ
(j)
k

}Mij
{

1− ψ(j)
k

}1−Mij

, k = 1, ...,K.

3. Update the case subclass weights η for j = 1, ..., J from

pr(η | · · · ) ∝
∏

i′:Ii′=j

[Zi′ | η, Ii′ ][η | α1]

https://github.com/zhenkewu/baker
http://mcmc-jags.sourceforge.net/
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which can be accomplished by first setting u∗K = 1 and sampling

u∗k ∼ Beta

(
1 + z′k, α1 +

K∑
l=k+1

z′l

)
, k = 1, ...,K − 1,

where z′k is the number of cases assigned to subclass k in class j. We write

z′k = # {i′ : Yi′ = 1, Zi′ = k, Ii′ = j} ,

for k = 1, ...,K−1, where “#A” counts the number of elements in set A. We then construct

η1 = u∗k, ηk = u∗k
∏k−1
l=1 {1− u∗l }, k = 2, ...,K.

4. Update the control subclass weights ν = (ν1, ..., νK)T from

pr(ν | · · · ) ∝
∏
i:Yi=0

[Zi | ν] · [ν | α0],

which can be accomplished by first setting v∗K = 1 and sampling

v∗k ∼ Beta

(
1 + zk, α0 +

K∑
l=k+1

zk

)
, k = 1, ...,K − 1,

where zk is the number of controls assigned to subclass k, and then constructing ν1 = v∗k,

νk = v∗k
∏k−1
l=1 (1− v∗l ), k = 2, ...,K.

5. Update concentration parameter α0 and α1 for stick-breaking prior from

pr(α0 | · · · ) ∝ [ν | α0][α0] ∝ αK−10 exp(−α0 · r) · pr(α0),

where r = −
{∑K−1

k=1 log(1− ν∗k)
}

. If conditionally conjugate prior for α0 is used, i.e.

α0 ∼ Gamma(aα0
, bα0

) with mean aα0
/bα0

and variance aα0
/b2α0

, then the full conditional

distribution reduces to Gamma (aα0
+K − 1, bα0

+ r) . Similarly for α1 with ν replaced by

η and (aα0
, bα0

) replaced by (aα1
, bα1

).

6. Update the vector of subclass TPR for j = 1, ..., J from

pr(θ(j) | · · · ) ∝
∏

{i′:Ii′=j}

[Mi′ | θ(j), Zi′ , Ii′ ][θ(j)]
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∝
K∏
k=1

{
θ
(j)
k

}m(j)
k1
{

1− θ(j)k
}m(j)

k0 · [θ(j)],

where m
(j)
kc = #{i′ : Yi′ = 1, Zi′ = k, Ii′ = j,Mi′j = c}, c = 0, 1. If prior for TPRs are

independent Beta distributions, then this is a product of Beta distributions.

7. Update subclass-specific FPRs ψ
(j)
k for j = 1, ..., J , k = 1, ...,K from

pr(ψ
(j)
k | · · · ) ∝

∏
i′:Yi′=1,Ii′ 6=j,Zi′=k

[Mi′j | ψ(j), Zi′ , Ii′ ]
∏
i:Yi=0

[Mij | ψ(j), Zi] · [ψ(j)
k ]

∝
{
ψ
(j)
k

}s(−j)
k1

{
1− ψ(j)

k

}s(−j)
k0 · pr(ψ(j)

k ),

where s
(−j)
kc = #{i′ : Yi′ = 1, Zi′ = k, Ii′ 6= j,Mi′j = c} + #{i : Yi = 0, Zi = k,Mij = c},

for c = 0, 1. If the prior on FPRs are Beta(a1, b1), then the above conditional distribution

is Beta(a1 + s
(j)
k1 , b1 + s

(j)
k0 ).

8. Update π from Dirichlet
(
d1 + t(j), ..., dJ + t(j)

)
, where t(j) is the number of cases assigned

to class j, i.e. t(j) = #{i′ : Yi′ = 1, Ii′ = j}, j = 1, .., J .

Appendix S4. Directed Acyclic Graph for Nested Partially-Latent Class Models

This section illustrates the model structure of nested partially-latent class models using a directed

acyclic graph (DAG) and provides some details on posterior inference.

Because the false positive rate (FPR) parameters Ψ are in both the control and case likelihood

(2.1) and (2.2) in the Main Manuscript, their posterior depend on both the control and case

models. This is referred to as “feedback” because the case model will indirectly inform Ψ. If we

only want the control data to inform the case model but not vice versa, we can “cut” this source

of feedback through approximate conditional updating in the Gibbs sampler (Lunn and others,

2009). That is, we update ψ
(j)
k by pr(ψ

(j)
k |Mij ; i : Yi = 0) instead of Step 7 of the Gibbs sampler

(see Appendix C). It will cut the information flow from the case model to the FPR parameters Ψ

and is indicated by the check-bit valves in Figure S1. It is desirable when certain parts of the joint
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· · ·

controlcase

⌘

· · ·

⌫

↵1

⇡

ZiZi0

✓
(J)
Zi0  

(J)
Zi

 
(1)
Zi

Mi0JMi01 Mi1 MiJ· · ·

IL
i0

measurements

subclass weights

vector of class 
weights (i.e. 
etiologic fractions)

class indicator

subclass-specific 
TPRs and FPRs

subclass indicator

hyper-parameter for 
subclass weights

case

✓
(1)
Zi0

↵0

Figure S1. Directed acyclic graph (DAG) for the npLCM. Quantities in circles are unknown parameters
or auxiliary variables; quantities in solid squares are observables. The etiologic fraction π is of primary
scientific interest. The solid arrows represent probabilistic relationship between the connected variables.

The “cut” valve “A B” means that when updating node A in the Gibbs sampler, we drop the
likelihood terms that involve node B.

model are considered not reliable to inform a subset of parameters, and can be implemented by

the cut function in WinBUGS 1.4. Such “cut-the-feedback” approximate Bayesian computation

has both gains in computational speed and inferential robustness, and is also suggested in other

contexts (Liu and others, 2009; Warren and others, 2012; Zigler and Dominici, 2014).
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Appendix S5. Simulation Studies

Appendix S5.1 Parameter Settings

We present the true parameter values and the empirical coverage rates in simulation studies

(Section 4).

Scenario I

π = (0.5, 0.2, 0.15, 0.1, 0.05)′

ΘT =

[
0.95 0.9 0.9 0.9 0.9
0.95 0.9 0.9 0.9 0.9

]
ΨT =

[
0.25 0.25 0.2 0.15 0.15
0.2 0.2 0.25 0.1 0.1

]
ν = (0.5, 0.5)′

η = (ηo, 1− ηo)′, 0 6 ηo 6 1

Scenario II

π = (0.5, 0.2, 0.15, 0.1, 0.05)′

ΘT =

[
0.95 0.95 0.55 0.95 0.95
0.95 0.55 0.95 0.55 0.55

]
ΨT =

[
0.4 0.4 0.05 0.2 0.2
0.05 0.05 0.4 0.05 0.05

]
ν = (0.5, 0.5)′

η = (ηo, 1− ηo)′, 0 6 ηo 6 1

Appendix S5.2 Bayesian Fitting in Finite Samples

In finite samples, one can fit the larger LD model that a priori encourages a small number of

subclasses. Extra subclasses can be used if the measurements have rich multivariate associations.

Through simulations, we compare Bayes estimates of etiologic fractions obtained from the npLCM

and pLCM. We generate T = 1, 000 datasets with sample size n1 = n0 = 500 under Scenario I

and II with parameters values described in the previous subsection. We fit the npLCM (truncation

level K∗ = 5 subclasses) and pLCM (K = 1) to each data set using informative Beta priors on

the true positive rates ({θ(j)k }) with 0.5 and 0.99 as the 2.5% and 97.5% quantiles mimicking

PERCH study.

We view the Bayes estimates as functions of data and assess their frequentist properties,

such as bias and variance (e.g. Efron, 2015). We define the repeated-sampling bias of the poste-

rior mean and its mean squared error (MSE) respectively as limT T
−1∑T

t=1

{
π
(t)
` − πo,`

}
, and

limT T
−1∑T

t=1(π
(t)
` − πo,`)2, ` = A, . . . , E, where π

(t)
` = E{π` | D(t),M} is the posterior mean
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taken with respect to the posterior distribution of π given the t-th simulated data set D(t) and

model M. In finite samples, the bias multiplied by the case sample size gives the expected num-

ber of cases over- or under-attributed to a cause, which is a measure of direct interest to the

motivating PERCH study.

The top panel of Table Table S1 compares the estimation biases by posterior means obtained

from the two models (np and p), each using data simulated under Scenario I and II as described

at the beginning of this subsection. To study the effect of LD upon the estimation of πo, we

assess the biases at five cases’ first subclass weights (ηo = 0, 0.25, 0.5, 0.75, 1). For a data set

with finite sample size, estimation bias can arise from random sampling, model mis-specification

or the prior, for which the first is averaged out by replication. The non-zero biases seen here

reflect likelihood mis-specification and the influence of the prior. When the likelihood is correctly

specified, only biases from priors remain. In Scenario II with strong LD, the npLCM performs

much better. For example, the LI assumption (pLCM) results in an upward bias of 26.2% for C

at ηo = 0, as well as other highlighted biases greater than 10% in magnitude. In Scenario I with

weak LD, the biases from both models are negligible (−1.9% ∼ 1.9%).

When the truth is close to LI, the npLCM is comparably efficient to pLCM for almost all

settings. The bottom panel of Table Table S1 shows the the ratio of MSEs for pLCM versus

npLCM. In Scenario I, the ratios are close to 1 indicating the npLCM has efficiently used stick-

breaking to strike the balance between estimation bias and variance. In Scenario II, compared to

the pLCM, the npLCM produced smaller MSEs for C at all ηo values, where the advantage is

largely explained by smaller biases.

The npLCM also produces 95% credible intervals (CI) with near-nominal empirical coverage

rates. For example, Appendix Table 1 highlights that the substantial under-coverages (< 80%)

only occurred when assuming LI. Because of the extra variability from the informative priors

on the TPRs, the CIs are conservative in Scenario I for both models. The over-coverage of both
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models is largely due to the assumed variances in the TPR parameters.
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Table S1. Comparison of Bayes estimates of etiology fractions obtained from npLCM (np) and pLCM
(p). Top: direct bias of the posterior mean (π` − πo,`); Bottom: ratio of mean squared errors (MSE) for
pLCM vs npLCM. All numbers are averaged across 1, 000 replications and multiplied by 100.

Truth: Cases’ First Subclass Weight (ηo)

Model 0 0.25 0.5 0.75 1

Class 100×Bias( Standard Error)

I

A
np -0.8( 0.1) -0.5( 0.1) -0.2( 0.1) 0.1( 0.1) 0.4( 0.1)

p -1.1( 0.1) -0.7( 0.1) -0.3( 0.1) -0.1( 0.1) 0.0( 0.1)

B
np -0.6( 0.1) -0.5( 0.1) -0.4( 0.1) -0.5( 0.1) -0.4( 0.1)

p -0.6( 0.1) -0.5( 0.1) -0.6( 0.1) -0.5( 0.1) -0.3( 0.1)

C
np 1.4( 0.1) 0.7( 0.1) -0.1( 0.1) -0.9( 0.1) -1.7( 0.1)

p 1.9( 0.1) 0.8( 0.1) -0.1( 0.1) -0.9( 0.1) -1.9( 0.1)

D
np -0.1( 0.1) 0.1( 0.1) 0.4( 0.1) 0.6( 0.1) 0.9( 0.1)

p -0.2( 0.1) 0.3( 0.1) 0.5( 0.1) 0.7( 0.1) 1.1( 0.1)

E
np 0.0( 0.1) 0.2( 0.1) 0.3( 0.1) 0.6( 0.1) 0.7( 0.1)

p 0.0( 0.0) 0.2( 0.1) 0.5( 0.1) 0.8( 0.1) 1.0( 0.1)

II

A
np 4.5( 0.1) 5.7( 0.1) 5.5( 0.1) 3.5( 0.1) 0.5( 0.1)

p -3.6( 0.1) 0.2( 0.1) 3.0( 0.1) 5.0( 0.1) 5.5( 0.1)

B
np -5.7( 0.1) -6.1( 0.1) -4.9( 0.1) -2.1( 0.1) 1.9( 0.1)

p -13.5( 0.1) -8.5( 0.1) -4.3( 0.1) -0.3( 0.1) 4.1( 0.1)

C
np 4.5( 0.1) 4.1( 0.1) 2.1( 0.1) -1.0( 0.1) -6.2( 0.1)

p 26.2( 0.1) 13.6( 0.1) 3.7( 0.1) -4.8( 0.1) -12.5( 0.0)

D
np -2.4( 0.1) -2.5( 0.1) -1.7( 0.1) -0.4( 0.1) 2.1( 0.1)

p -5.8( 0.0) -3.3( 0.1) -1.6( 0.1) -0.2( 0.1) 1.3( 0.1)

E
np -1.0( 0.0) -1.3( 0.0) -1.0( 0.0) -0.1( 0.1) 1.6( 0.1)

p -3.2( 0.0) -1.9( 0.0) -0.8( 0.1) 0.4( 0.1) 1.7( 0.1)

Class 100×Ratio of MSE( Standard Error)

I

A 94( 6) 115( 7) 100( 6) 92( 6) 91( 6)

B 105( 6) 94( 6) 98( 6) 96( 6) 91( 6)

C 114( 7) 101( 6) 93( 5) 93( 5) 90( 5)

D 104( 6) 105( 6) 96( 6) 97( 6) 108( 7)

E 97( 4) 96( 6) 124( 7) 98( 6) 119( 7)

II

A 82( 4) 25( 1) 47( 2) 115( 6) 221( 12)

B 516( 11) 177( 5) 80( 3) 62( 4) 140( 8)

C 2379( 77) 711( 26) 131( 7) 268( 13) 357( 8)

D 397( 14) 152( 6) 94( 5) 79( 4) 60( 4)

E 357( 13) 151( 6) 102( 5) 95( 6) 82( 5)
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Table S2. Comparison of the actual coverage rates of 95% credible intervals for each disease class
estimated by results fitted to 1, 000 replication data sets.

Truth: Cases’ First Subclass Weight (ηo)

Model 0 0.25 0.5 0.75 1

Class 100×Coverage (Standard Error)

I

A
np 98.5( 0.4) 99.3( 0.3) 98.5( 0.4) 98.1( 0.4) 97.8( 0.5)

p 97.8( 0.5) 97.6( 0.5) 98.3( 0.4) 97.7( 0.5) 96.5( 0.6)

B
np 98.8( 0.3) 97.9( 0.5) 97.8( 0.5) 97.3( 0.5) 98.4( 0.4)

p 98.5( 0.4) 98.2( 0.4) 97.4( 0.5) 97.7( 0.5) 96.8( 0.6)

C
np 96.6( 0.6) 98.5( 0.4) 97.7( 0.5) 97.7( 0.5) 94.3( 0.7)

p 93.0( 0.8) 96.6( 0.6) 98.6( 0.4) 97.5( 0.5) 95.1( 0.7)

D
np 99.0( 0.3) 99.1( 0.3) 98.1( 0.4) 98.1( 0.4) 97.6( 0.5)

p 98.3( 0.4) 98.6( 0.4) 98.3( 0.4) 96.9( 0.5) 95.8( 0.6)

E
np 98.1( 0.4) 98.5( 0.4) 98.2( 0.4) 98.0( 0.4) 97.4( 0.5)

p 98.6( 0.4) 97.1( 0.5) 96.6( 0.6) 96.3( 0.6) 95.2( 0.7)

II

A
np 95.4( 0.7) 88.4( 1.1) 88.2( 1.1) 94.0( 0.8) 98.8( 0.3)

p 99.6( 0.2) 100.0( 0.0) 96.7( 0.6) 85.6 ( 1.1) 72.3( 1.4)

B
np 80.4 ( 1.3) 84.8 ( 1.1) 86.2 ( 1.1) 98.3( 0.4) 98.1( 0.4)

p 9.9( 0.9) 62.5( 1.5) 92.1( 0.9) 98.9( 0.3) 82.9 ( 1.2)

C
np 89.2( 1.0) 89.8( 1.0) 97.2( 0.5) 98.0( 0.4) 84.4 ( 1.1)

p 0.0( 0.0) 6.1( 0.8) 91.0( 0.9) 75.3( 1.4) 0.0( 0.0)

D
np 93.5( 0.8) 90.7( 0.9) 95.4( 0.7) 98.0( 0.4) 95.1( 0.7)

p 53.3( 1.6) 88.7( 1.0) 97.2( 0.5) 98.0( 0.4) 93.9( 0.8)

E
np 95.4( 0.7) 94.7( 0.7) 96.1( 0.6) 98.5( 0.4) 96.5( 0.6)

p 56.1( 1.6) 92.1( 0.9) 97.8( 0.5) 98.2( 0.4) 92.0( 0.9)
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Appendix S6. For Section 5: Analysis of PERCH Data

Full Pathogen Names and Abbreviations:

(1).HINF- Haemophilus Influenzae; (2). ADENO -Adenovirus; (3). HMPV-A/B - Human Metapneu-

movirus Type A or B; (4). PARA-1 - Parainfluenza Type 1 Virus; (5). RHINO - Rhinovirus; (6).

RSV - Respiratory Syncytial Virus Type A or B.
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Figure S2. Matrix of significant pairwise log odds ratios (LOR) for cases (upper) and controls (lower).
LOR is at the top of the cell. Below it, its standard error is in smaller type, using the same color as the
LOR. Then the estimate is divided by its standard error. We put the actual value when the Z-statistics
has an absolute value greater than 2; a plus (red) or minus (blue) if between 1 and 2; blank otherwise.
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Figure S3. Posterior predictive checking for pairwise odds ratios separately for cases (upper triangle)
and controls (lower triangle) with expert priors on true positive rates. Left : pLCM; Right : npLCM. Each
entry is a standardized log odds ratio difference (SLORD): the observed log odds ratio for a pair of
measurements minus the mean LOR for the posterior predictive distribution divided by the standard
deviation of the posterior predictive distribution. The first significant digit of absolute SLORs are shown
in red for positive and blue for negative values, and only those greater than 2 are shown. On average,
for a well fitting model, we expect 0.05 ×

(
6
2

)
× 2 ≈ 1.5(±2.4) non-blank cells in cases and controls,

respectively.
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